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CHPh14b and (CH2Ph)Cl(7)5-C5Me5)Ta=CHPh.23a Our results 
imply that the metal-carbene bonds of these two compounds are 
weaker than their alkylidene counterparts. An X-ray crystal 
structure on (CH2Ph)Cp2Ta=CHPh supports this idea; the 
T a = C bond distance of 2.07 A is 0.17 A shorter that a Ta-C 
single bond, but 0.05 A longer than a typical Ta=C double bond. 
A weaker than normal T a = C bond would make these two com­
pounds interesting candidates for catalytic studies. 

Conclusion 
Through the use of a properly designed basis set (doublef in 

the metal carbene, minimal basis elsewhere) and limited electron 
correlation (GMO and CI methods) within the double bond, 
reasonable electron densities and dissociation energies can be 
calculated on large metal-carbene systems. 

A calculation on ethylene using the same techniques and basis 
set yields a bond dissociation energy only 4 kcal mor1 less than 
the experimental estimate of 163 kcal mor1. A partial geometry 
optimization on CpCl2Nb=CH2 indicates this electron-deficient 
complex has a N b = C bond distance, 1.99 A, similar to well-

(34) (a) Friedrich, P.; Besl, G.; Fischer, E. 0.; Huttner, G. J. Organomet. 
Chem. 1977, 139, C68. (b) Redhouse, A. D. Ibid. 1975, 99, C29. Similar 
Fe compounds are also known; see Brookhart, M.; Tucker, J. R.; Husk, G. 
R. J. Am. Chem. Soc. 1981, 103, 979. Brookhart, M.; Tucker, J. R.; Flood, 
T. C; Jensen, J. Ibid. 1980, 102, 7802. 

(35) Wolczanski, P. T.; Threlkel, R. S.; Bercaw, J. E. J. Am. Chem. Soc. 
1979, 101, 218. 

characterized 18-electron complexes. The calculated rotational 
barrier of the methylene in CpCl2Nb=CH2 is 14.6 kcal mol"1, 
in good agreement with experimental determinations of similar 
compounds. This value also sets a lower limit on the ir bond energy 
of CpCl2Nb=CH2, since the rr bond is only partially broken when 
the methylene group is rotated 90°. The other three metal 
carbenes studied have bond dissociation energies 14 to 18 kcal 
mol"1 less than CpCl2Nb=CH2, apparently because of weaker 
ir bonds in these complexes. 

Several independent techniques (dissociation energies, single 
electron valence bond density plots, atomic deformation densities, 
fragment deformation densities, molecular orbital diagrams, and 
fragment analysis of molecular orbitals) illustrate the electronic 
difference between Fischer-type metal carbenes and Schrock-type 
tantalum carbenes. The former bind datively as singlet fragments, 
whereas the latter bind covalently as triplet fragments. 
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Abstract: A semiempirical model is presented which predicts photoassisted electron-transfer rate dependence on distance for 
redox groups connected by rigid polymeric linkers. The model approximately reproduces the observed decay of the optical 
tunneling matrix element with distance found for the rigid ruthenium dithiaspiro mixed-valence complexes of Stein, Lewis, 
Seitz, and Taube.1"3 The method calculates the through-bond propagation of the wave function tail, by a method which emphasizes 
obtaining the correct distance dependence of the tunneling matrix element for these weakly interacting donor-acceptor complexes. 
The method also allows prediction of the magnitude of the matrix element, the importance of hole or electron tunneling in 
the transport process, the effect of donor and acceptor redox potential on the matrix element, and the thermal tunneling matrix 
element for these and other compounds. 

Introduction 
Electron-transfer theory predicts an approximately exponential 

decrease in electron-transfer rate with distance when the donor 
and acceptor weakly interact.4"6 Only recently, however, have 
rigid molecules with weakly interacting electron donor and ac­
ceptor groups become available.1"3'7'8 Predictions of transfer rates, 
qualitative in the past, must be refined to treat this new class of 
compounds. A series of mixed-valence ruthenium molecules (I, 
II, III) was recently synthesized and studied by Stein, Lewis, Seitz, 
and Taube.2'3 

Interaction between the metal ions is believed to be rather weak 
and to involve through-bond rather than through-space interac­
tions. 2'3'9 If the interaction between donor and acceptor is indeed 
weak, one may imagine that relaxation of vibrational modes in 
the molecule and of the solvent around the odd electron (vibronic 
coupling) stabilizes the localization. This relaxation provides a 
deeper well for the electron on one side of the molecule compared 
to the otherwise equivalent site. Hence one finds, for a short time 
at least, a ground state for the odd electron localized on one relaxed 

f Also California Institute of Technology, Division of Biology, and Bell 
Laboratories, Murray Hill, NJ 07974. 
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D. C, Frauenfelder, H„ Marcus, R. A„ Schreiffer, J. R., Sutin, N., Eds.; 
Academic Press: New York, 1979, pp 173-199. 

(2) Stein, C. A.; Taube, H. J. Am. Chem. Soc. 1981, 103, 693-695. 
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metal-ligand group. An unoccupied excited state for an electron 
localized on the unrelaxed site also exists.10 Therefore, a 
charge-transfer optical absorption between these states can be 
found. For I, II, and III a charge-transfer band was found (t = 
43, 9, 2.3 M"1 CITT1, respectively). The extinction coefficient of 
this band is related to the tunneling matrix element in the Gaussian 
approximation when the donor and acceptor are identical as shown 
in eq I.10 

((E0) = f(|Tabp/£0)(tf7<r)G (1) 

f = [2n/(n2 + I)](M2/mNa/2300)(e2/hc)(\/ITY'2 = 
4.60 X 1018 M-1 cm"3 when n = 1.53 

G = exp[-(£0 - A)2/2<r2] 

E0 is the energy of the photon, e is the charge on the electron, 
a is the donor acceptor distance, Tab is the optical tunneling matrix 
element, n is the index of refraction of the sample, N0 is Avogadro's 
number, h is Planck's constant/2-7r, c is the speed of light, A is 
the reorganizational energy, and a is the half-width of the 
charge-transfer band at 0.61 maximum. A first-order perturbation 
treatment of weakly interacting donor and acceptor groups predicts 
the electric dipole matrix element of the charge-transfer band is 
given by10 

Wg|«|*CT> = eaT a b / (£g - En) (2) 

\pt and ^ x are the ground- and excited-state wave functions, 
respectively, x is the position operator. Equation 1 allows the 
calculation of |Tab|, the optical tunneling matrix element, from 
the experimentally determined extinction coefficient. |Tab| contains 
the distance dependence of the electron-transfer rate. Fermi's 
"golden rule" predicts that the transfer rate depends on the square 
°f |Tabl-u We develop a method of finding the appropriate ground-
and excited-state wave functions which allows the independent 
prediction of Tab. The most important capability of this method 
is its ability to predict the distance dependence of Tab for donors 
and acceptors of given redox energy. The relevance of this method 
to electron transfer in proteins is also considered. 

Theoretical Section 

The problem of electron exchange between traps at fixed dis­
tance has been discussed recently by several authors.12"17 Un­
derstanding how electron-transfer rates depend on molecular 
structure is essential for an understanding of biological elec­
tron-transfer reactions. This interest in the structure-function 
relationship forces us to first understand electron-transfer processes 
in "model compounds". Tab depends critically on the overlap of 
the two localized wave functions and is difficult to calculate. These 
matrix elements depend on the details of what is usually an un­
interesting chemical aspect of the electronic wave function, its 
tail. The wave-function tail decay can be significantly altered 
by changing the atoms between donor and acceptor. The problem 
of calculating tunneling matrix elements is, as yet, intractable using 
traditional ab initio methods for molecular structure determination. 

(4) Hopfield, J. J. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 3640-3644. 
(5) Jortner, J. J. Chem. Phys. 1976, 64, 4860-4867. 
(6) Eyring, H.; Walter, J.; Kimball, G. E. "Quantum Chemistry"; Wiley: 

New York, 1944; Chapter XI. 
(7) Calcaterra, L. T.; Closs, G. L.; Miller, J. R. J. Am. Chem. Soc. 1983, 

105, 670-671. 
(8) Pasman, P.; Koper, N. W.; Verhoeven, J. W. Rech. Trav. Chim. 

Pays-Bas 1982, 101, 363-364. 
(9) Stein, C. A.; Lewis, N. A.; Seitz, G.; Baker, A. D. Inorg. Chem. 1983, 

22, 1124-1228. 
(10) Hopfield, J. J. Biophys. J. 1977, 18, 311-321. 
(11) Mertzbacher, E. "Quantum Mechanics", 2nd ed., Wiley: New York, 

1970. 
(12) DeVault, D. Q. Rev. Biophys. 1980, 13, 387-564. 
(13) Jortner, J. Biochim. Biophys. Acta 1980, 594, 193-230. 
(14) Day, P. Int. Rev. Phys. Chem. 1981, /, 149-193. 
(15) Chance, B., DeVault, D. C, Frauenfelder, H., Marcus, R. A., 

Schrieffer, J. R., Sutin, N., Eds. "Tunneling in Biological Systems"; Academic 
Press: New York, 1979. 

(16) Lippard, S. J., Ed. "Progress in Inorganic Chemistry"; Wiley: New 
York, 1983; Vol. 30. 

(17) Larsson, S. J. Am. Chem. Soc. 1981, 103, 4034-4040. 

The choice of orbital basis set may severely alter the size of Tab. 
Traditional variational methods, which optimize the energy of a 
state, are rather insensitive to the form of the small amplitude 
wave function tail. Variational methods can tolerate errors in the 
long-range behavior of the function because changes of these tails 
cause little change in the total energy of the state. We have chosen 
a semiempirical approach which assures the proper behavior of 
the wave function in the region between the electron traps where 
the wave function decay is rapid. 

Periodic Approximation. The fundamental assumption which 
we make is that within the central region of the hydrocarbon linker 
the potential is periodic; i.e., at corresponding points of different 
rings the potential is equal. This assumption neglects the per­
turbing effects of the Coulombic potentials centered on the ru­
thenium atoms. As the experiments were performed in aqueous 
DCl, the dielectric screening is expected to shield the central atoms 
(at least 2.5 A away) from this potential. The terminal sulfur 
orbitals perturb the potentials of the neighboring carbon atoms, 
causing them to differ somewhat from other secondary carbons 
in the center of the spiro ligand. This effect is expected to be small. 
Within the standard extended-Huckel theory, our periodic ap­
proximation is equivalent to choosing the same orbital exponents 
for each orbital of the same type. 

Let us investigate the form of the wave function for a long chain 
of spiroalkane rings. Because the potential is periodic along this 
chain, the translation operator T commutes with the Hamiltonian 
ft of the system in this region: 

[Ti,T] = 0 (3) 

The wave function can then be chosen to be an eigenfunction of 
the translation operator, so; 

W = (0* (4) 

71V = (OV. • • • 
where e is some number. We may solve the Schrodinger equation 
to find a relationship between t and the energy of the states.18 

Truncating one end of the chain and adding special end orbitals 
does not change the energy-« relationship since the potential in 
the central region is not changed by the truncation. Moreover, 
one can instead truncate the opposite end, add a different group 
here, and solve a different single "impurity" problem. Finally, 
one may truncate these single impurity wave functions and form 
a linear combination of these two single impurity chains. One 
is assured (within the LCAO approximation) of having a wave 
function with the correct behavior in the central region. The 
energy-« relation true for the infinite spiro chain is also true for 
the finite molecule. This approach is equivalent to writing the 
Bloch states for a crystal in terms of some wave vector. Only after 
the boundary conditions of the crystal are considered, be they cyclic 
or not, do we obtain explicit values for the wave vector. 

The problem of interactions between "special" groups embedded 
in otherwise normal solvent or crystal pervades chemistry. For 
example, theories of electronic excitation transfer parallel very 
closely the central ideas of electron transfer theory.4J9'20 Koster 
and Slater studied the energetics of impurity levels in solids long 
ago.21'22 Semiconductors doped with impurities are known to trap 
excitons (electron hole pairs) on these impurities or on neighboring 
impurities. Faulkner and Hopfield developed a theory of the 
optical properties for a class of these doped semiconductors.23,24 

These problems are cousins of the photoassisted electron-transfer 
problem.10'25"27 A treatment of wave function propagation similar 

(18) In the limit of a long chain or orbitals, we discover Bloch's theorem 
and allowed "bands" of energy eigenvalues for the very large number of 
eigenstates. See ref 33. 

(19) Robinson, G. W.; Frosch, R. P. J. Chem. Phys. 1962, 37, 1962-1973. 
(20) Robinson, G. W.; Frosch, R. P. J. Chem. Phys. 1963, 38, 1187-1203. 
(21) Koster, G. F.; Slater, J. C. Phys. Rev. 1954, 95, 1167-1176. 
(22) Koster, G. F.; Slater, J. C. Phys. Rev. 1954, 96, 1208-1223. 
(23) Faulkner, R. A. Phys. Rev. 1968, 175, 991-1009. 
(24) Faulkner, R. A.; Hopfield, J. J. In "Localized Excitations in Solids"; 

Wallis, R. F., Ed.; Plenum Press: New York, 1968; pp 218-238. 
(25) Redi, M.; Hopfield, J. J. J. Chem. Phys. 1980, 72, 6651-6660. 
(26) Hush, N. S. Electrochim. Acta 1968, 13, 1005-1023. 
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Figure 1. (a) The 16 orbitals of the unit cell are shown. Orbitals with 
equal integers are combined to form symmetrized orbitals. The orbital 
interactions are also shown, (b) The six symmetrized basis orbitals that 
comprise the unit cell are shown. 

to ours was used by McConnell to model intramolecular thermally 
activated charge transfer between aromatic free radicals separated 
by flexible methylene bridges.28 Morton-Blake recently used a 
related perturbational method to study defect states in polymers.29 

Koiller, Brandi, and Ferreira have studied simple impurity 
problems using a Green's function formulation.30'31 Larsson has 
compared the distance dependnece of <r- and 7r-mediated transfer 
rates between metals.32 Most of these methods are adaptations 
of the tight-binding method of calculating the band structure for 
crystalline solids.33 They differ in their description of the 
"periodic" part and the boundary conditions of the problem. 

Because we have already made severe restrictions on the form 
of the wave-function decay, we choose the most simple model of 
the Hamiltonian in the central region and of the unit cell. We 
select the one-electron Hamiltonian 

ft = Ea1 afa, + L Eft, (O1
+Oj + Oj+O1) + 

i j>i i 

E T.ykm(ak
+am + am

+ak) (5) 
k>m m 

where a+ and a are the electron creation and annihilation oper­
ators, respectively.34 i sums over all basis functions in the wave 

(27) Richardson, D. E.; Taube, H. J. Am. Chem. Soc. 1983, 105. 40-51. 
(28) McConnell, H. M. J. Chem. Phys. 1961, 35, 508-515. 
(29) Morton-Blake, D. A. Theor. Chim. Acta 1979, 51, 85-95; 1980, 56, 

93-112; 1981, 59, 213-227; 1982, 61, 193-202. 
(30) Koiller, B.; Brandi, H. S. Theor. Chim. Acta 1981, 60, 11-17. 
(31) Brandi, H. S.; Koiller, B.; Ferreira, R. Theor. Chim. Acta 1981, 60, 

89-96. 
(32) Larsson, S. Discuss. Faraday Soc. 1982 74, 390-392. 
(33) Ashcroft, N. W.; Mermin, N. D. "Solid State Physics"; Saunders: 

Philadelphia, 1976; Chapters 8, 10, and 28. 
(34) Taylor, P. L. "A Quantum Approach to the Solid State"; Prentice 

Hall; Englewood Cliffs, N.J., 1970; Chapter 2. 
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Figure 2. This shows the (e + 1/«) dependence on E resulting from eq 
7. The band gap falls between -6.6 and +4.2 eV. The eigenstates of the 
infinite problem fall between the dashed lines. 

function. i and j are nearest-neighbor orbitals on adjacent nuclei. 
k and m are orbitals on the same nucleus. There are 12 sp3 carbon 
orbitals and 4 hydrogen orbitals per spiroalkane unit cell. As­
suming that the Ru atoms lie on the line of the sulfur atoms and 
quaternary carbons, the molecule has two mirror planes containing 
the metal atoms.9 This assumption is reasonable if there is x or 
8 binding between sulfur and ruthenium. Because the effective 
metal orbitals lie in mirror planes and there must be nonzero 
orbital coefficients on the intervening atoms to allow electron 
transfer to occur, the "transferred" electron must occupy an even 
orbital with respect to these planes. A d^ like orbital, for example, 
would suffice. Nonzero coefficients in both planes are required 
by the form of our Hamiltonian and the assumption of only 
nearest-neighbor interaction. This restriction causes the following 
sets of orbitals (shown in Figure 1) to have equal amplititude: 

i 01a .01b! . i02a.02bl> (03a .03b) . {04a.04b!> (05a. 0 5 b . 0 5 « 0SdI. (06a- 0 6 b . 

06c. 06di- Because of the symmetry, there are only six unique basis 
functions per unit cell. The complete 16-orbital and symmetrized 
6-orbital unit cells are shown in Figure 1. The wave function is 
assumed to be of the form (according to the above recipe) 

t = £ [ («0 , + 602 + c03 + «"04 + /05 + S06V + W(a<t>i + 
j 

Z>0, + cfa + dfr +f4>} + £ 0 6 ) ^ ] +X0L + G0R (6) 

where 0, is the symmetric combination of 0 l a and 0 lb, etc. For 
the central region of the molecule there are three exchange pa­
rameters and one Coulomb interaction parameter (a): 0, y, /3CH. 
and aH- Figure la shows the interactions related to these pa­
rameters. The carbon sp3 Coulomb energy is chosen as the energy 
zero. Zero overlap is assumed between orbitals on neighboring 
atoms. The special relationship between the energy and the decay 
constant, e, holds in the infinite spiroalkane as well as in the 
mixed-valence dithiaspiro complexes. It is determined by inte­
grating the Schrodinger equation for the infinite spiroalkane over 
the six symmetrized orbitals in the unit cell. Other unit cell choices 
are possible and should give identical wave functions. 

One integrates the Schrodinger equation for the infinite chain 
(W = 0, X = 0, Q = 0 in eq 6) or the finite problem. Assuming 
zero overlap the matrix equation (eq 7) must hold. The deter­
minant of the matrix must equal zero. This gives the energy-f 
relationship that is carried into the finite problem due to the 
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periodic potential in the molecule's central region. Neighboring 
unit cells only communicate with other cells via orbitals 3 and 
4. Therefore, factors of t and 1/e appear in eq 7 only once. It 
is useful to write this equation in the form (e + 1/e) = x(E)/y(E). 
x{E) is a sixth degree polynomial. y{E) is a second degree 
polynomial. x(E) arises from the carbon backbone. The C-H 
bonds split the energies associated with the backbone, giving rise 
to the second degree y(E). A plot of this equation is shown in 
Figure 2 for specific choices of the parameters. Points on these 
curves correspond to eigenstates for molecules containing spiro-
alkane unit cells. The exact positions of the allowed states for 
a given problem are determined by the boundary conditions im­
posed on the linker, e may have real and imaginary parts. De-
localized states (Bloch states) correspond to e = exp(ik-R) and 
|e| = I.35 These are the states between the dashed lines (±2) and 
correspond to allowed energies for the one-dimensional "crystal" 
comprised of spiroalkane unit cells. Other states (|e| < 1) cor­
respond to localized states. 

One must select Coulomb and exchange parameters corre­
sponding to the traditional extended-Hiickel parameters. Because 
we are interested in carbon interactions in periodic networks, we 
use the tight-binding parameters fit to diamond structure calcu­
lations which in turn fit the known band structure and optical 
properties of diamond.36 We are interested first in getting the 
E-t relationship of the system correct rather than calculating 
experimental energies. Toward this end the diamond paameters 
are more appropriate than the standard extended Hiickel pa­
rameters. In this calculation carbon sp3 hybrid orbitals are chosen 
as the carbon basis orbitals. It is never necessary to explicitly 
write these orbitals in terms of Slater or Gaussian functions 
because the interaction parameters are available from the diamond 
calculation.37 

A form of the extended-Hiickel exchange parameter in general 
use is 38,39 

ffab = K(Ex + Eb)S/2 (S) 

K is set by the theorist, E1 and Eb are orbital ionization energies, 
and S is the overlap between atomic orbitals. If E^ and Eb are 
the orbital ionization energies of sp3 carbon orbitals (available 
from tables) and 5 e* 0.65, then K = 1.0 to fit the diamond 
parameters to eq 8.4^41 The orbital ionization energy of hydrogen 
compared to a carbon 2s orbital is 5.9 eV based on the standard 
tables.40 7 = 1Z^(Ot5 - a?). From the diamond calculation, the 
sp3 Coulomb energy of carbon is 5.55 eV relative to carbon 2s. 
The carbon sp3 Coulomb integral was chosen as the energy zero. 
Hence, aH is 0.35 eV. A carbon-hydrogen overlap of 0.69, 
Coulomb energies from the orbital ionization energy tables, and 
the above K factor gives /3CH = -9.14 eV.39'40 These values were 
used in eq 7 to generate Figure 2. The orbital interactions are 
summarized in Table I. 

Boundary Conditions. Now that the energy-decay constant 
relationship is determined for the spiroalkane linker, we must find 
where on Figure 2 the ruthenium localized states appear. The 
infinite spiroalkane has a band gap from -6.7 to +4.4 eV. 
Calculations of the solid-state properties of crystalline materials 
containing impurities suggest that localized states will occur in 
the gap regions.30"33 Just where these states occur and what their 
decay constant is depend critically on how we choose the terminal 
orbitals. We model each metal-pentaammine with a single ef­
fective orbital. The important Ru effective orbital must be even 
with respect to reflection through the two mirror planes which 
include the metals. Sulfur-ruthenium interactions are probably 

(35) k is a purely real vector in this case. 
(36) Chadi, D. J.; Cohen, M. L. Phys. Status Solidi, B 1975, 68, 405-419. 
(37) One could also have used the work of footnotes 2 and 13 in Chadi and 

Cohen's work (ref 36 in this paper). 
(38) Daudel, R.; Sandorfy, C. "Semiempirical Wave-mechanical Calcu­

lations on Polyatomic Molecules"; Yale University Press: New Haven, 1971. 
(39) Yates, K. "Hiickel Molecular Orbital Theory"; Academic Press: New 

York, 1978. 
(40) Ballhausen, C. J.; Gray, H. B. "Molecular Orbital Theory"; Benja-

min/Cummings: London, 1964; p 122. 
(41) Mulliken, R. S. J. Am. Chetn. Soc. 1950, 72, 4493-4503. 
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Table I. C and H Parameter Values 

Table II. 

parameter 

7 

a H 

a c (sp 3 ) 

Sulfur Parameter 

parameter 

7S 

Values 

energy (cV) 

-8.47 
-1.85 
-9.14 

0.35 
0.00 

energy (cV) 

-5 .11 
-3.00 
-0.75 

mediated by several orbitals.9,42"45 It is known that the car­
bon-sulfur-carbon bond angle in the spiro ring is ~78 0 . 4 6 

Strained bonds such as these prefer an increased p electron content. 
Yet, for this model we choose to place sp2 orbitals on the sulfur. 
This provides ruthenium with an orbital even with respect to the 
two mirror planes with which to interact. One might have chosen 
more complex combinations of orbitals. The energy-e relationship 
shown in Figure 2, however, is independent of these choices. The 
choice of sulfur orbitals weakly contributes to the position on the 
plot where the localized states fall. The most critical parameters 
are the metal Coulomb energies. The sulfur parameters are shown 
in Table II. They were obtained for sp2 orbitals using K= 1.0, 
5S C = 0.37, and the same orbital ionization energy table.40'41 

One now integrates the Schrodinger equation over the six unique 
boundary orbitals and their nearest neighbors. Simultaneously 
satisfying these equations (eq 9) and the energy-e equation (eq 
7) determines the eigenvalues and eigenfunctions of the system. 
The first four lines in the determinant result from integrating the 
Schrodinger equation over the orbitals near Ru(II). The last four 
lines result from the orbitals near Ru(III). In eq 9 b' = bja and 
/ ' = f/a, where b and a represent the coefficients in eq 6. The 
effective metal-sulfur resonance integrals, /33S and /32s>

 w e r e 

calculated by the method of Harrison and Froyen.47,48 We find 
Sis = -2.14 eV and /33S = -1.57 eV. The Coulomb energies of 
the two effective ruthenium orbitals were determined uniquely 
based on two requirements. First, the energy of the intervalence 
charge-transfer band must match the experimental energy. 
Second, the energy of the sulfur to Ru(III) ligand to metal 
charge-transfer band (LMCT) must match the experimental 
energy. For the mixed-valence molecules these LMCT energies 
are 2.74, 2.68, and 2.70 eV for the two-, three-, and four-ring 
systems. The two "effective" metal pentaammine orbitals each 
represent 21 atoms by only one orbital. Therefore, the actual 
Coulomb energy (a2 or a3) of this "orbital" is not, of itself, 
physically meaningful. 

With these assumptions the wave functions are uniquely de­
termined for I, II, and III. Computationally, we examined a large 
number of energies, calculated e from eq 7, and evaluated the 
determinant in eq 9. For each energy these are two roots of e. 
By convention we choose the value of e less than 1. The energy 
of the highest occupied bridge state was determined from an 
extended-Hiickel calculation on the two- and three-ring mixed-
valence compounds to be about -7.0 eV. This energy was assumed 
to remain the same for the four-ring system. 

The tunneling matrix element is calculated from the dipole 
matrix element (eq 2). We calculated the two metal localized 
wave functions of the system in the band gap and approximated 

(42) Kuehn, C. G.; Taube, H. J. Am. Chem. Soc. 1976, 98, 689-702. 
(43) Stein, C. A,; Taube, H. J. Am. Chem. Soc. 1978, 100, 1635-1637. 
(44) Stein, C. A.; Taube, H. Inorg. Chem. 1979, 18, 1168-1170. 
(45) Stein, C. A.; Taube, H. Inorg. Chem. 1979, 18, 2212-2216. 
(46) Tagaki, W. In "Organic Chemistry of Sulfur"; Oae, S., Ed.; Plenum: 

New York, 1977; p 247. 
(47) Harrison, W. A,; Froyen, S. Phys. Rev. B 1980, 21, 3214-3221. 
(48) Froyen, S. Phys. Rev. B 1980, 22, 3119-3121. 
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the dipole matrix element between these states with the formula 

<*g|*S|*„> =* eZCgl*CnX, (10) 

where Cg/* = coefficient of ith ground-state atomic orbital, CMl 

= coefficient of /th excited-state atomic orbital, and X1 = X 
coordinate of ith atom. This formula is reliable to the extent that 
orbital overlap is small and the x coordinate changes slowly as 
one moves between metal atoms.49"52 The dipole matrix element 
involves only the position along the axis joining the metal atoms. 
The y and z components of the matrix element cancel because 
of the inversion symmetry of the four-member rings. In eq 1 and 
2 a is the through-space distance. 

Though semiempirical in approach, this adapted tight-binding 
method for calculating localized states in mixed-valence molecules 
offers many benefits. A fairly simple calculation allows the 
prediction of the rate of decay (c) of a localized wave function 
with distance as a function of redox energy. The band-structure 
determination is not complicated. Even simple models of n-alkane 
and spiroalkane produce c-E relationships in the gap region (see 
Figure 3a and 3b) very similar to the more complex models. We 
are able to separate the calculation of the tunneling matrix ele­
ments into two parts. First the band structure of the rigid bridge 
is determined. This structure sets limits on the decay of the wave 
function with distance. Second we impose boundary conditions 
on the problem dependent on the redox properties of the electron 
donor and acceptor. Together these properties determine the 
electronic tunneling matrix element. The band structures for 
several other unit cell choices are shown in Figures 4a-d. The 
validity of the form of the wave function in eq 6 was confirmed 
by finding the eigenvalues and eigenvectors of the full extend­
ed-Huckel problem (a 16 X 16 matrix in the case of the two-ring 
system). For the two-ring system the wave functions found by 
the two approaches were consistent. 

In the case of long-distance electron transfer between well-
localized states, the wave functions may be approximated. For 
an arbitrary unit cell the two localized wave functions are given 
approximately by 

\p% ^ O)(J)0 + C1(J)1 + «1202 + • • • + «1*~'0/V-1 + (\N(t>N + fa/V+1 

and 

^ « — 5<t>0 + «2*01 + t2N~l4>2 + • • • + €22</>/V-l + il<l>N + T)4>N+\ 

For the optical problem at hand c{> c2 because the ground state 
is closer to the bonding states than the excited states (both are 
very far from the antibonding states); 0 < e < l , 5 = ^ 0 , and f 
=* 0. The optical tunneling matrix element between the localized 
states is 

Tab°P « (ZXtAfBntiE/a ~ (AXZa)(AE)C2C1" <x ^t1" 

(Ha) 

/V is the number of atoms in the linker backbone, and we have 
ignored all terms in cj for y > 1. A1 and B1 are orbital coefficients. 
«i and e2 represent the wave-function decay per unit cell but may 
be converted to the decay per carbon atom. In the thermal 
electron-transfer reactions, e, = e2 in the activated complex (by 

(49) Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 
247-422. 

(50) Mulliken, R. S. J. Chem. Phys. 1939, 7, 14-20, 20-34. 
(51) Mulliken, R. S.; Person, W. B. "Molecular Complexes"; Wiley: New 

York, 1969. 
(52) Hoijtink, G. J. In "Molecular Orbitals in Chemistry, Physics, and 

Biology"; Academic Press: New York, 1964. 
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Figure 3. (a) The t + 1/e dependence on energy for a two orbital per 
site n-alkane model (marked 2) and the full four symmetrized orbital per 
site /i-alkane (marked 4) is shown. Parameters are taken from Table I. 
The two orbital per site model makes relatively good predictions of« + 
1/«. (b) As in (a), comparing the full six symmetrized orbitals per unit 
cell spiroalkane (marked 6) with the four symmetrized orbital per unit 
cell (no C-H bonds) spiroalkane (marked 4). Parameters are taken from 
Table I. 
energy conservation). Rather than relating the thermal matrix 
element to a splitting between even and odd electronic states (see 
later section), we may use the above zeroth-order wave functions 
(when 5 = f = 0) to calculate the electronic Hamiltonian matrix 
element between the states. In the thermal-transfer problem Eg 

= En, C1 = «2. n = <", f - S, and the part of the Hamiltonian 
omitted in writing ^8 is H' = (aN+i+aN + aN

+aN+1)fi'. 

WjPWn) = /SV ( l ib) 

Thus, addition of an extra unit cell to the linker changes the 
donor-acceptor matrix element by approximately a factor of e. 
Tables VI and VII verify that these simple arguments are valid 
for the spiro molecules. The thermal tunneling matrix element 
is frequently expressed as 

Tab =* A exp(-aR) (12) 

for long-distance charge transfer, c is simply related to a. R is 
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Figure 4. Band structures for several units cell choices are shown. Interaction parameters are chosen from Table I. e + 1/t = ±2 is marked with 
dashed lines, (a) The one orbital per site model, (b) The two orbital per site model, (c) The four symmetrized orbital per site «-alkane model, (d) 
The four symmetrized orbital per site model of spiroalkane. Shaded orbitals indicate corresponding orbitals of adjacent unit cells. 

Table III. Comparison of Decay Constants e and a 

unit cell 

/--alkane 
/j-alkane 
spiroalkane 
spiroalkane 

distance 
measured 
through" 

bond 
space 
bond 
space 

carbon 
atoms 

traversed 

IO
 W

 I
O

 —
 

a (A'1) 

-(In C)/1.54 
-(In <-)/2.4 
-(In e)/3.08 
-(In c)l2.22 

° Through-space distance is the shorted distance between ends 
of a "taut" molecule. All calculations assume bond-mediated 
transfer. Through-space distances are given for comparison al­
though the transfer is still calculated through bond. 

sometimes chosen as a through-bond distance and sometimes as 
a through-space distance. Table III shows the expressions relating 
a to e for spiroalkane and w-alkane for both through-bond and 
through-space distance measurements. The actual calculations 
on the spiroalkanes do not use the approximation of eq 11a and 
l ib . 

Table IV. Calculated Optical Tunneling Matrix Elements0 

Comparison with Experiment 
Photoassisted Charge Transfer. Varying the end orbital pa­

rameters for fixed metal-sulfur interaction parameters we found 
metal localized states in the band gap region of Figure 2. We 
varied the Coulomb integrals of Ru(III) and Ru(II) to fit the 
energy of the intervalence charge-transfer band and the ligand 
to Ru(III) charge-transfer band. The localized states are very 
near the valence band. This result suggests that, in these mole­
cules, charge transfer is mediated by hole transfer through the 
bonding states of the linker. The energies, decay constants, and 
Coulomb parameters resulting from the fit are given in Table IV. 
The dipole matrix elements were calculated with eq 2 assuming 
a distance of 1.11 A between all nonmetal nuclei (measured along 
the metal-metal axis). The metal-sulfur distances were taken 
from ref 3. The calculation of |Tab| from experiment (ref 3) 
assumed the appropriate distance to be used in eq 1 was the 
through-bond distance. In the optical charge-transfer formalism, 
however, the through-space distance is required when calculating 
with eq 1 and 2. Corrected values of |Tab| determined from the 

no. of rings 

2 
3 
4 
5 
6 

» 2 

-5 .4 
-5.6 
-5 .9 
-5 .9 
-5 .9 

a3 

-4 .0 
-4 .0 
-4 .0 
-4 .0 
-4 .0 

*g 
-5 .7 
-5 .9 
-6.1 
-6.1 
-6.1 

H 
0.20 
0.22 
0.27 
0.27 
0.27 

'-ex 

-4 .3 
-4 .3 
-4 .3 
-4 .3 
-4 .3 

eex 

0.11 
0.11 
0.11 
0.1 1 
0.11 

<'vgl-vlv>ex> 

-4 .9 X 10~2 

-1 .0 X 10"2 

-3.1 X 10'3 

-8 .4 X K)-"4 

-2 .3 X 10'4 

Tab 

-7 .2 X 10"3 

-1 .3 X 10"3 

-4.1 X 10"4 

-9 .5 X Hr5 

-2 .3 X K)"5 

a Position matrix element in A; all other values are cV. 
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Table V. Corrected Experimental Tab's 

Beratan and Hopfield 

,08 

no. of rings Eop (eV) 

metal-metal 
through-space 
distance (A) ITabl (eV) 

1.36 
1.54 
1.80 

9.3 
11.5 
13.7 

2.1 XlO"2 

8.5 XlO"3 

4.0 X 1O-3 

experiments are given in Table V. 
The comproportionation constants for these molecules are not 

known. Since no separation was observed between the two waves 
in the cyclic voltammetry experiments, it is reasonable to assume 
that the metals are oxidized in a statistical fashion with X00n, = 
4.27 If the metals were oxidized in a statistical fashion with no 
regard for the oxidation state of the other end of the molecule, 
the assumed concentrations of mixed-valence species would be 
a factor of 2 too large. The calculatedvalues for Tab, in turn, 
would be too small by the factor (1/V2). The experimentally 
determined |Tab| is roughly 0.62 exp(-0.37i?), where R is the 
through-space metal-metal distance in A. 

Both the magnitude and decay of the calculated Tab fit the 
experimentally determined values fairly well with respect to decay 
length and prefactor (eq 12). Tab for the four-ring system is 
calculated to be 0.31 of the three-ring value. The change cor­
responds to a through-space a of 0.53 A"1. The calculated 
through-space prefactor (̂ 4) for the four-ring system is -0.58 eV. 
The average change of Tab upon addition of a unit cell is a factor 
of 0.25; thus the average through-space calculated a is found to 
be ~0.63. This calculation can be performed for an arbitrary 
number of linkers. Tab is predicted for the five- and six-ring 
systems (see Table IV). 

The value e in spiroalkane is roughly the factor by which the 
wave function decays upon moving between any two corresponding 
orbitals in adjacent unit cells. In the case of spiroalkane there 
are two carbon atoms between the corresponding carbon orbitals 
on adjacent unit cells. For the purpose of comparing wave-function 
decays per carbon atom, we define «' = e1/2. Thus, a mostly 
localized electron mixing weakly with a spiroalkane chain has an 
amplitude which decays by a factor of«' per carbon atom in the 
spiro backbone. Seitz and Taube report an exinction coefficient 
of 5 M"1 cm-1 for IV.2 This is a nonrigid molecule, but since 

5+ (NH3)5Ru — S S — Ru(NH3I5 

/ \ 
nz 

the intervalence band extinction coefficient is so small and the 
Coulombic repulsion between metals favors a large through-space 
ruthenium distance, it is likely that direct Ru-Ru through-space 
interactions are small. The extinction coefficient varies as the 
square of the tunneling matrix element. According to eq 11a 
T(alkane)/T(spiro) =* (0.25/0.33)(0.33/0.45)^. Thus T2(al-
kane)/T2(spiro) a* 0.17. Hence, the extinction coefficient for IV 
is expected to be (0.17)(43) or 7.3 M"1 cm-1, very close to the 
experimental value. The values of e used here are decay per carbon 
atom (e') and are taken from Table IV and Figure 5b. N equals 
2. Figures 5a and 5b compare «-alkane and spiroalkane in the 
band gap region. 

Predictions for Related Experiments. Taube and Stein have 
prepared the mixed-valence ?rans-isnoctaammine complex of the 
two-ring ligand (isn = isonicotinamide). Little change in extinction 
coefficient was found. Since there is a fair amount of uncertainty 
in the choice of the sulfur-metal interactions in our method, we 
can best compare the decrease of Tab with distance for different 
redox energy electron traps. It is harder to calculate the exact 
change in rate for a fixed number of rings due to ligand or metal 
substitution because such changes effect the boundary conditions 
in subtle ways. The redox potential of Ru(NH3)4isn is changed 
by +0.2 V compared to Ru(NH3)5 in the spiro molecules.2 

Changing a3 and a2 by -0.2 eV from their values in Table IV 
causes <^g|x|^ex> to change by a factor of 0.23 in going from two 

ENERGY (eV) 

Figure 5. (a) The e + 1/6 dependence on energy for n- and spiroalkanes 
is shown. The sign of e + 1 /i for n-alkane is reversed from its true value. 
The horizontal line represents the edge of the band gap. The parameters 
were chosen from Table I. Figure 6b can be obtained from this by solving 
a quadratic in e. (b) The e' (decay per carbon atom) dependence on 
electron energy for spiro- and «-alkanes in the band gap. The decay 
constant for spiro- is everywhere greater than for the n-alkane. Param­
eters are taken from Table I. In both figures "S" marks the spiroalkane 
curves and "n-" the n-alkane curves. 

to three rings. Tab according to eq 2, is predicted to change by 
a factor of 0.21 on going from the two-ring isn to the three-ring 
isn system. The pentaammine system was calculated to change 
Tab by a factor of 0.15 on going from the two- to three-ring system. 
A smaller distance from the valence band was indeed expected 
to make the isn-localized state wave functions decay more slowly 
compared to the pentaammine states. 

Our method allows the prediction of the effect of altered electron 
donor and acceptor trap depth (redox energy) on « and hence on 
Tab°P' We give several illustrations for the spiroalkane system 
where the Coulomb energies of the metals are both changed. Such 
a change might be induced by ligand or metal substitution, or by 
a change of solvent. The values of the parameters, energies of 
the localized states, and the tunneling matrix elements are given 
in Table VI. Changing the redox levels of the electron traps alters 
the decay of Tab with distance. This decay constant is, therefore, 
not a "universal" parameter. Because of uncertainties in /3(S-Ru), 
direct comparison of (i/-g |x|^,,x) for different redox levels but 
constant number of rings is discouraged. 

Thermally activated electron exchange may also be an im-
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Table VI. Optical Tab for Altered Trap Depths" 

no. of rings (lflc\x\^ex) •ab 

2 
3 
4 
2b 
3 
4 
2 
3 
4 
2 
3 
4 

-4 .9 
-4 .9 
-4 .9 
-5 .6 
-5 .8 
-6 .1 
-6 .3 
-6 .3 
-6.3 
-6 .5 
-6 .5 
-6 .5 

-3 .4 
-3 .4 
-3 .4 
-4 .2 
-4 .2 
-4 .2 
-4 .8 
-4 .8 
-4 .8 
-5 .0 
-5 .0 
-5 .0 

-5 .3 
-5 .3 
-5 .3 
-5 .9 
-6 .0 
-6 .3 
-6 .4 
-6 .4 
-6 .4 
-6.6 
-6 .6 
-6 .6 

0.16 
0.16 
0.16 
0.22 
0.25 
0.33 
0.43 
0.43 
0.43 
0.72 
0.69 
0.68 

-3 .8 
-3 .8 
-3 .8 
-4 .5 
-4 .5 
-4 .5 
-5 .0 
-5 .0 
-5 .0 
-5 .2 
-5 .2 
-5 .2 

0.10 
0.10 
0.10 
0.12 
0.12 
0.12 
0.14 
0.14 
0.14 
0.15 
0.15 
0.15 

-4.4 X 10~2 

-7 .4 X 10"3 

-1 .2 X 10"3 

-5 .2 X 10"2 

-1 .2 X 10"2 

-4 .9 X 10"3 

-7 .0X 10~2 

-2 .8 X 10~2 

-1 .2 X 10"2 

-8.6 X 10"2 

-4 .7 X 10~2 

-2 .9 X 10"2 

-7.1 X 10'3 

-9 .7 X 10"4 

-1 .3 X 10'4 

-7 .8 X 10'3 

-1.6 X 10'3 

-6.4 X 10'4 

-1 .1 X 10"2 

-3 .4 X 10~3 

-1 .2 X 10-3 

-1 .2 X 10"2 

-5 .7 X 10'3 

-3 .0X 10"3 

a (12S = -2.14, (33S = -1.57, all energies in eV. 
mixed-valence complexes. 
Table VII 

no. of Ci3 = 
rines a, 

The second set of values corresponds roughly to the isn analogues of the pcntaammine 

Table VIII, Comparison of Decay Constants for 
Spiro- and ;;-Alkanca 

e b t\ 'ab 

A. Calculated Thermal Tunneling Matrix Elements0 

2 
3 
4 
5 

2 
3 
4 
2° 
3 
4 
2 
3 
4 
2 
3 
4 

-4 .7 
-4 .8 
-4.95 
-4.95 

B. 
-4 .2 
-4 .2 
-4 .2 
- 4 . 9 
-5 .0 
-5 .15 
-5 .5 
-5 .5 
-5 .5 
-6 .4 
-6 .4 
-6 .4 

-5.06 
-5.14 
-5.27 
-5 .27 

Thermal 
-4.6 
-4 .6 
-4 .6 
-5 .2 
-5 .3 
-5.4 
-5 .8 
-5 .7 
-5 .7 
-6 .5 
-6 .5 
-6 .5 

0.14 
0.15 
0.15 
0.15 

Tab for • 
0.12 
0.12 
0.12 
0.15 
0.16 
0.17 
0.20 
0.20 
0.20 
0.50 
0.50 
0.50 

-5.04 
-5.14 
-5.27 
-5.27 

0.14 
0.15 
0.15 
0.15 

7.5 X IO'3 

1.1 X 10"3 

1.8X10-" 
2.8 X 10"5 

Altered Trap Dcpthsb 

-4.6 
-4.6 
-4 .6 
-5 .2 
-5 .3 
-5 .4 
-5 .7 
-5 .7 
-5 .7 
-6 .5 
-6 .5 
-6 .5 

0.12 
0.12 
0.12 
0.15 
0.16 
0.17 
0.20 
0.20 
0.20 
0.50 
0.50 
0.50 

7.3 X 10"3 

9.1 X 10'4 

1.1 X 10'4 

7.7 X 10^3 

1.2 X 10'3 

2.2 X 10"4 

9.1 X 10"3 

1.8 X 1O-3 

3.5 X 10"4 

1.7 X 10"2 

7.8 X 10"3 

3.7 X 10~3 

a ViS = PiS = -1 -86 • Tab = V2(£'a - ^ h ) - a]1 energies in cV. 
b (3JS = ^ S = _ 1.86, all energies in eV. c The second set of 
values corresponds roughly to the isn analogues of the penta-
ammine mixed-valence complexes. 

portant process in these mixed-valence molecules. The thermal 
electron-tunneling matrix element is just half the symmetric an­
tisymmetric splitting when a3 = a2 and 02s

 = fts- Choosing these 
parameters to be equal to the averages of the parameters used 
in the optical charge-transfer process yields predictions of the 
thermal tunneling matrix elements for the pentaammine complexes 
(Table VIIA).53 We find the distance dependence of Tab to be 
similar to the distance dependence found for the optical process. 
Table VIIB shows the energy splitting for a3 = a2 and 02S = Sis 
= -1.86 at several points in the band gap. 

For the case corresponding roughly to isn-substituted systems 
(a3 = a2 = -4.9 eV, fts = /S23 = -1.86 eV, two rings), Tab = 7.7 
X lfr3 eV. For three rings a} = a2 = -5.0 eV, fts = /S25 = -1.86 
eV, and Tab = 1.2 X IfJ"3 eV. Tab (thermal) has changed by a 
factor of only —0.16. Compare this to the values in Table VA 
(—0.15) per linker cell). More drastic effects will be seen on the 
thermal matrix element by considerably changing the redox level 
of the coordinated metals. 

General Discussion 
Geometric Effects on Tab. The considerable difference in 

electron mediation properties of n-alkane compared to spiroalkane 
linker arises from the two equivalent electronic pathways in each 
unit cell of spiroalkane. In the spiro molecules the electrons have 
twice the number of transfer routes, and the wave function am­
plitude essentially adds at each quaternary center before decaying 
into the next ring. 

The energy-e relationship for an «-alkane where the carbon 
orbtials are represented by a single orbital and there are two atoms 
per unit cell is 

(53) This argument is justified by electron-hole symmetry. 

alkanc spiroalkane 

(eV) 

4.0 
3.0 
2.0 
1.0 
0.0 

-1 .0 
-2 .0 
-3 .0 
-4 .0 
-5 .0 
-6 .0 

e + 1/e 

-3 .0 
-3 .7 
-4 .2 
-4 .6 
-4 .9 
-5 .0 
-5 .0 
-4 .8 
-4.4 
-3 .9 
-2 .9 

el 

0.38 
0.30 
0.25 
0.23 
0.22 
0.21 
0.21 
0.22 
0.23 
0.28 
0.39 

6+ 1/e 

2.9 
5.3 
7.5 
9.4 

10.7 
11.5 
11.5 
10.9 
9.4 
7.3 
4.4 

el 

0.40 
0.20 
0.14 
0.11 
0.09 
0.09 
0.09 
0.09 
0.11 
0.14 
0.24 

le'i 

0.63 
0.44 
0.40 
0.33 
0.31 
0.30 
0.30 
0.30 
0.33 
0.37 
0.48 

a e is the decay per unit cell, e is tlie decay per carbon atom. 

(e + 1/e) = £ 2 / / 3 2 - 2 

For spiroalkane represented with one orbital per carbon atom 

(e + l /e) = (£ 2 / 2 /3 2 ) -2 
and there are three atoms per unit cell (this equation results from 
the case even with respect to the mirror planes). Hydrogen atoms 
were ignored in both cases. We see that the spiro linkage is 
equivalent to replacing /3 in the linear problem with V2/3. The 
thermal matrix element in the one orbital per atom linear problem 
is proportional to (/3/A)N, where & is the exchange integral, A is 
energy of the electron traps, and /V is the number of unit cells 
in the bridge.28 Thus, even the most simple model for the spiro 
unit cell indicates its enhanced electron mediation properties 
compared to a linear chain. 

For long chains, the amplititude of the wave function in the 
interior of the molecule changes by the factor e on moving one 
unit cell in the chain. In spiroalkanes there are two carbon atoms 
between equivalent points in adjacent unit cells. To first order 
we can calculate the change in optical or thermal matrix element 
between donor and acceptor wave functions for any groups con­
nected by the linkers using this fact. For example, when E = -5.0, 
the donor-acceptor overlap changes by a factor of about 0.28 upon 
adding another CH2 group to the «-alkane. At the same energy 
the overlap between spiro wave functions changes by a factor of 
0.14 upon adding an extra spiro unit. This is an average decay 
factor of only 0.37 per carbon atom for the spiro linker. The 
significant difference in decay per carbon atom is a unique feature 
of the spiro linkage and accounts for the "surprisingly rapid" 
charge transfer observed by Stein, Lewis, Seitz, and Taube. Table 
VIII highlights this difference for several energies. 

We can use this sort of analysis to compare the attenuation of 
Tab with distance for a specific linker simply by studying the e 
vs. E plot. Figure 5a compares the band region in the e + 1/e 
plots for rt-alkane and spiroalkane. e is the decay per unit cell. 
Figure 5b shows the e' vs. E plot for the band gap where e' is the 
decay per carbon atom. Such a divergence from the alkane decay 
should not occur to such a large degree in the parallel but not 
frequently intersecting electron-transfer pathways of the steroid 
derivatives prepared by Calcaterra, Closs, and Miller, for example.7 
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Comparison with Previous Estimates of a. The constant t is 
related to the decay constant a as shown in Table III. Previous 
estimations of the energy of the "transferring" electron relative 
to the medium in which it tunnels have been made. For example, 
Hopfield estimated a =:0.72 A"1 while Jortner suggested a a* 
1.3 A"1 for electron transfer in proteins. It is now clear that this 
decay depends critically on both the energy of the transferred 
electron and the detailed structure of the barrier between donor 
and acceptor. Hopfield's original model assumed a 2-eV barrier 
height to tunneling. Within our model that means the localized 
states are 2 eV from either the conduction or valence band (see 
Figure 5b). In the n-alkane model the states 2 eV from the band 
edges have t ~ 0.21-0.23 or a = 0.98 A"1 (through bond) and 
a = 1.3 A-1 (through space; notice comment below Table III). 

Redi and Hopfield compared the optical and thermal tunneling 
matrix elements for two model potentials.25 They found Top > 
Tth, especially at large electron-transfer distances. Their wave 
functions decay with energy and distance as exp(-V\E\R). In 
our calculation (e + 1/e) & 1/e so \E\ <x 1/« near the band edges. 
Thus, from eq 12 and Table III the wave function decays with 
distance and energy as 

exp(-l(ln E)\R) 

For given E the wave-function decay is always more rapid in the 
square well or 5 well models of Redi and Hopfield. Also, 
wave-function decay is more sensitive to energy changes in the 
Redi and Hopfield model. Because of the different dependence 
of decay on energy, the vibrational relaxation of the localized state 
produces a greater change in matrix element in the Redi-Hopfield 
model than in the current model. This serves to decrease the 
optical matrix with distance more slowly than the thermal matrix 
element in their model. In the model described here, the optical 
and thermal tunneling matrix elements are not very different in 
magnitude (see Tables IV, VI, and VII). 

Quantum Chemical Considerations. Our modified tight binding 
calculation has predicted that electron transfer between ruthenium 
ions proceeds via hole transfer through the bonding bridge orbitals. 
Wave function decay is slow for donor and acceptor eigenstates 
near the band edges. The two actual exchange mechanisms, 
double exchange (electron transfer via conduction band) and 
superexchange (hole transfer through the valence band), involve 
mixing of trap states with linker states.54,55 Since this mixing 
involves energy denominators (in first-order perturbation theory) 
of £(trap) - ^(bridge), the strength of the mixing between 
localized states and linker states is enhanced by their energetic 
proximity. 

An infinite or cyclic chain of spiroalkane orbitals satisfies 
Bloch's theorem so t = exp(ik-R) where k is a real reciprocal lattice 
vector and R is a translation vector. In this case -2 < (e + 1/e) 
< 2. We expect (except, perhaps, at points of special symmetry) 
as many energy roots as basis functions in the unit cell. The six 
unique orbitals in the spiroalkane give rise to the six bands for 
-2 < (e + 1/e) < 2 in Figure 2. When the linear molecule is 
truncated, many eigenstates still fall in the range -2 < (e + 1/e) 
< 2 and are well delocalized. Others have e real and correspond 
to localized states. The singularities in these band-structure plots 
arise from energy splittings due to orbitals not contributing to C-C 
bonds. 

One could have formulated the boundary conditions of the spiro 
problem in many other ways. For example, several orbitals on 
the metals and sulfurs were ignored. Also, a particular geometry 
was assumed. As long as the position of the sulfur orbitals which 
participate in the electron transfer do not drastically change in 
energy, we will be forced to place the localized ruthenium ei­
genstates very near the valence states and will find similar falloff 
of Tab with distance. The ability to find this characteristic decay 
and its dependence on linker geometry is the principal success of 
this method. 

If one believes that the optical absorption reported in the ex­
perimental studies promotes an electron between localized states, 

(54) Halpern, J.; Orgel, L. Discuss. Faraday Soc. 1960, 29, 32-41. 
(55) Ratner, M. A.; Ondrechen, M. J. MoI. Phys. 1976, 32, 1233-1245. 
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Figure 6. The traditional view of the potential energy surface relevant 
to electron transfer is shown. The nuclear coordinate represents the 
metal-ligand and solvent coordinates. 
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Figure 7. The total energy of the two states, bonding (B) and antibonding 
(A), formed by a linear combination of two atomic orbitals is shown. 

one must build the ability to adopt local character into the wave 
functions from the very start. The CNDO/2 method that Stein, 
Lewis, Seitz, and Baker used to analyze only the linker will not 
predict the exponential dependence of the charge transfer band 
extinction coefficient on distance found in these molecules. 

The thermal tunneling matrix element represents the splitting 
between nuclear potential energy surfaces at the crossing point 
between reagents and products (Figure 6).56 The nuclear co­
ordinate in this figure symbolically represents the many metal-
ligand and metal-solvent coordinates. The size of Tab varies with 
the metal-metal distance in a fashion shown in Figure 7. We 
notice from Table VII that the thermal tunneling matrix element 
decreases with distance but never changes sign. In a two-orbital, 
one-electron model of electron transfer this energy splitting must 
not change sign with distance. A sign change implies a crossing 
of the bonding and antibonding energy surfaces (Figure 7). Such 
a crossing is forbidden by the nodal theorem.57 That is, since 
the ground state is nodeless and since higher states have nodes, 
E1 < £ex for any internuclear separation. When intervening 
orbitals between donor and acceptor are introduced, the sign of 
Tab may vary with transfer distance. For example, in Figure 4c 
we see that e for «-alkane is negative so the sign of Tab alternates 
as the number of bridging carbon atoms is increased. However, 
within our model |Tab|

2 is still a monotonically decreasing function 
of donor acceptor separation, which may only be changed in 
integral steps. Newton has calculated the tunneling matrix element 
for electron exchange between hexaquo Fe(II) and Fe(III) using 
ab initio quantum mechanical methods.S8 He finds a node in Tab 

for an internuclear iron distance of 7.6 A. Thus, either there is 
an unusual many-body effect at work or his method incorrectly 

(56) Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 155-196. 
(57) Messiah, A. "Quantum Mechanics"; Wiley: New York, 1958; Vol. 

1 pp 109-110. 
(58) Newton, M. D. Int. J. Quantum Chem.: Quantum Chem. Symp. 

1980, 14, 363-391. 
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calculates the long-range wave function decay. 
Our method does have severe limitations. It is a one-electron 

approximation and has the flaws of the standard Hiickel tech­
niques.^9,52,59 Transition and dipole moments calculated from 
Hiickel wave functions are not always reliable. However, to the 
extent that the "odd" electron in the electron-transfer calculation 
is in a very different eigenstate compared with the other electrons 
in the molecule, this approximation may be better than expected. 
The omnipresent problem of selecting appropriate, consistent 
parameters is obvious in this calculation. Particularly annoying 
is the difficulty of treating transition metals within the one-electron 
approximation. 

Biological Applications of This Theory. The techniques de­
scribed in this paper are applicable to electron-transfer processes 
where the through-bond rather than through-space electron-
transfer pathway dominates. The method requires knowledge of 
the energy of the "transferred" electron relative to the bridge states. 
The question of through-bond vs. through-space pathways in 
metal-labeled proteins is an important one.60,61 Our method allows 
prediction of the changes in electron-transfer rate as a function 
of redox energy and through-bond distance. To study through-
bond effects on long-distance electron transfer in proteins, one 
would like to roughly fix the through-space distance between donor 
and acceptor and vary only the number of through-bond links 
between the centers. Perhaps binding of metals to the surface 
of a roughly spherical protein with a redox group in its center 
would be appropriate. Such an experiment would show the im­
portance of through-bond interactions (and the usefulness of this 
theory) in electron transfer through proteins. 

For the mixed-valence spiro molecules the experimental value 
of t for Ru2+ is ~0.4-0.47 or e' ~ 0.65 (recall i' = t1'2). This 
value of e corresponds to E = -6.5 eV. The redox potentials of 
these molecules are ~+0.5V vs. NHE; however, the redox energy 
corresponds to thermal charge transfer so we also have ~0.75 
eV of relaxation energy to include. Using these facts we may 
correlate the redox potential and decay constant for spiro and other 
saturated linkers. By changing the sign of the energy scale in 
Figure 5b, placing the redox energy of +0.5V vs. NHE at -5.75 
eV (-6.5 + 0.75) eV on that figure, and converting from e to a 
we find Figures 8a and 8b. These describe the decay constant 
as a function of redox energy for the n-alkane. Now if we consider 
the alkane backbone to be a fair model for the protein backbone, 
we may calculate a for a given number of peptide unit cells. 

Electron transfer between native and modified proteins occurs 
in an activated complex with electronic energy Et] ~. (Ed + £a)/2 
where Ee] is the energy appropriate for use in Figure 8. £d and 
£ a are the redox energies of the separated ligated metals. 

Assuming two redox centers are known to be separated by X 
A, a "taut" alkane chain between the center and the chain would 
contain N = (2^ / (2 .4) carbon atoms. The tunneling matrix 
element for this linkage would be 

exp[-a(£")/V(1.54)] (13) 

a(£ e l) is the through-bond decay constant appropriate to the 
activated complex (read from Figure 8a). This should be the 
upper limit of the bond-mediated tunneling matrix element. 
Calculation of matrix elements through longer chains requires 
only knowledge of iV and £e l . For example, in the pentaammine 
ruthenium(III) (histidine-33)-ferricytochrome prepared by Gray 
and co-workers, £e l = 0.21 V vs. NHE, X = 15 A, N = 12.5 so 
Tab

ma* ~ exp[-(0.69)(12.5)(1.54)] ~ 1.7 X 10"6 eV. Since the 
transfer probably does not occur through such a taut structure 
and Tab decreases by a factor of exp[-(0.69)(1.54)(3)] ~ 0.04 
per amino acid residue, it is unlikely that the dominant pathway 
in this protein with this choice of metals is a purely bond-mediated 
one. However, if the more favorable energetic regions (near the 

(59) Sinanoglu, O.; Wiberg, K. B. "Sigma Molecular Orbital Theory"; 
Yale University Press: New Haven, 1970. 

(60) Margalit, R.; Pecht, I.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 
301-302. 

(61) Winkler, J. R.; Nocera, D. G.; Yocom, K. M.; Bordignon, E.; Gray, 
H. B. J. Am. Chem. Soc. 1982. 104, 5798-5800. 
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Figure 8. The dependence of thermal matrix element decay constant (a) 
as a function of the redox energy of the activated complex is shown: (a) 
when distance is measured through bond for an alkane chain, (b) when 
distance is measured through space for a "taut" alkane chain. 

band edges) are accessible, a through-bond pathway may become 
more important. 

Calculations exploiting the periodic nature of other saturated 
rigid linkers are now being carried out. Similar calculations on 
polypeptide backbone are also underway. With this method we 
hope to achieve a better understanding of the role of bridge ge­
ometry and donor/acceptor energetics on the electronic tunneling 
matrix element. 

Tab and "Inverted Behavior". In this paper we have considered 
only the electronic contribution to the electron-transfer rate. The 
actual rate is, within the Franck-Condon and Born-Oppenheimer 
approximations, a product of nuclear and electronic factors. In 
I-IV the nuclear factors should be approximately equal so a 
comparison of |Tab|

2 may be used to predict ratios of transfer rates. 
Both the optical and thermal tunneling matrix elements are 

quite sensitive to the energies of the donor and acceptor localized 
states with respect to the bridge states. Therefore, when comparing 
transfer rate as a function of reaction driving force, one must 
realize that changing reaction energetics may in fact change the 
size of Tab (depending on the position of the localized states in 
the band gap). For this reason, when looking for the "inverted 
region" in families of molecules, one must also consider the change 
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in the electronic contribution to the rate with driving force.62,63 

Depending on the energy of the localized states, a misinterpretation 
of the data may result if Tab is assumed constant. Future work 
will attempt to include a model for nuclear motion. 

Conclusions 
We have shown that semiempirical quantum chemical tech­

niques predict the dependence of tunneling matrix element on 
distance and linker geometry. The localized states used in these 
calculations must have the proper exponential decay in order to 
calculate meaningful rates. To the extent that the linkers create 
periodic potentials for the electrons, we are assured of obtaining 

(62) Marcus, R. A.; Siders, P. J. Phys. Chem. 1982, 86, 622-630. 
(63) Beitz, J. V.; Miller, J. R. / . Chem. Phys. 1979, 71, 4579-4595. 

I. Introduction 

The gradient vector field of the charge density, the field Vp(r), 
determines the structure and structural stability of a molecular 
system.1 In terms of the global behavior of this field, one may 
define the atoms2 and the set of atomic interactions present in 
a molecule.3,4 The Laplacian distribution of the charge density, 
the field V2p(r), identifies the regions of space wherein the 
electronic charge of a molecule is locally concentrated and de­
pleted.5 The Laplacian of p(r), as well as providing this enhanced 
view of the local form of the charge density, relates this form to 

(1) Bader, R. F. W.; Nguyen-Dang, T. T.; TaI, Y. Rep. Prog. Phys. 1981, 
44, 893-948. 

(2) Bader, R. F. W.; Beddall, P. M. J. Chem. Phys. 1972, 56, 3320-3329. 
(3) Bader, R. F. W.; Anderson, S. G.; Duke, A. J. J. Am. Chem. Soc. 1979, 

101, 1389-1395. 
(4) Bader, R. F. W.; Nguyen-Dang, T. T.; TaI, Y. J. Chem. Phys. 1979, 

70, 4316-4329. 
(5) Bader, R. F. W.; Essen, H. J. Chem. Phys., in press. 

proper wave-function decay in these calculations. There are two 
major qualities of the method that make it especially appealing. 
It allows direct study of the effect of linker geometry on the 
electronic tunneling matrix element. The method also allows 
systematic study of the effect of donor and acceptor redox level 
on the electronic tunnelling matrix element. It is hoped that the 
synthesis of other rigidly linked, weakly interacting electron do­
nor-acceptor molecules will provide further tests of this theory. 
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the quantum mechanical equations which govern the behavior of 
p(r).6'7 In particular, the sign of the Laplacian of p(r) determines 
the relative magnitudes of the local contributions of the potential 
and kinetic energy densities to their virial theorem averages. By 
obtaining a map of those regions where V2p(r) < 0, the regions 
where electronic charge is concentrated, one obtains a map of the 
regions where the potential energy makes its dominant contri­
butions to the energy of a system.5 

The Laplacian distribution of a molecular charge distribution 
demonstrates the existence of local concentrations of electronic 
charge in both the bonded and nonbonded regions of an atom in 
a molecule. This information is obtained without recourse to any 
orbital model or arbitrary reference state. The ability to locate 

(6) Bader, R. F. W.; Nguyen-Dang, T. T. Adv. Quantum Chem. 1981,14, 
63-124. 

(7) Bader, R. F. W.; Essen, H. "Local Density Approximations in Quan­
tum and Solid State Physics"; Dahl, J. P., Avery, J., Ed.; Plenum Press: New 
York, 1983. 
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Abstract: The Laplacian of the charge density, the quantity V2p(r), determines the regions of space wherein electronic charge 
is locally concentrated and depleted. This function demonstrates, without recourse to any orbital model or arbitrary reference 
state, the existence of local concentrations of electronic charge in both the bonded and nonbonded regions of an atom in a 
molecule. The form of the Laplacian of p for an isolated atom reflects its shell structure by exhibiting a corresponding number 
of pairs of spherical shells of alternating charge concentration and charge depletion. The uniform valence shell of charge 
concentration is distorted upon chemical combination through the creation of local maxima within this shell. The numbers, 
locations, and relative sizes of the bonded and nonbonded concentrations of charge in the valence shell of a bonded atom as 
determined by the Laplacian of p are found to be in general agreement with the corresponding properties that are ascribed 
to bonded and nonbonded electron pairs in models of electronic structure and, particularly, in Gillespie's VSEPR model of 
molecular geometry. Examples are considered which contain three (SO2), four (CH4, SiH4, NH3, PH3, OH2, SH2, NF3, PF3, 
ClCl2

+, ClF2
+), five (ClF3, SF4, SF4O), arid six (ClF5) local concentrations of electronic charge in the valence shell of the 

central atom. It is also shown that the regions of maximum electronic charge concentration and depletion as determined by 
the Laplacian of p correlate respectively with the positions of electrophilic and nucleophilic attack. Nucleophilic attack at 
a carbonyl carbon, for example, is predicted to occur from above or below the plane of the nuclei along lines of approach forming 
an angle of ~ 110° with the C=O bond axis. The Laplacian of p gives physical expression to the electron-pair concept of 
Lewis. This same function relates the local form of the charge density to the mechanics which govern it. Thus one may attempt 
through its use to obtain a deeper understanding of the models of molecular geometry and reactivity that make use of the 
electron-pair concept. 
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